A Model for Word Clustering

نویسندگان

  • James A. Thom
  • Justin Zobel
چکیده

It is common to model the distribution of words in text by measures such as the Poisson approximation. However, these measures ignore effects such as clustering: our analysis of document collections demonstrates that the Poisson approximation can significantly overestimate the probability that a document contains a word. Based on our analysis, we propose a new model for distribution of words in text, and show how this model can be used to estimate the probability that a document contains a word and the number of distinct words in a document.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجره‌های هم‌پوشان

A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...

متن کامل

Word clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering

The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

یک روش دو مرحلهای برای بازشناسی کلمات دستنوشته فارسی به کمک بلوکبندی تطبیقی گرادیان تصویر

This paper presented a two step method for offline handwritten Farsi word recognition. In first step, in order to improve the recognition accuracy and speed, an algorithm proposed for initial eliminating lexicon entries unlikely to match the input image. For lexicon reduction, the words of lexicon are clustered using ISOCLUS and Hierarchal clustering algorithm. Clustering is based on the featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JASIS

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1992